
Space Science & Interplanetary Missions - Chandrayaan-1 to Mangalyaan

Dr S V Sharma
Prof. Vikram Sarabhai, Distinguished Professor
ISRO Satellite Centre, Bengaluru

Presentation Overview

- 1 Indian Space Programme
- 2 Space Science & Planetary Exploration
 - Chandrayaan-1 India's First Mission to Moon
 - Indian Mars Orbiter Mission Challenges & Success Story
- 3 Space Science Missions On the Anvil
 - Astrosat
 - Chandrayaan-2
 - Aditya

The Facets Of Indian Space Programme

VISION

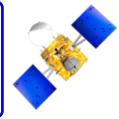
Harness space technology for national development
..... we must be second to none in the applications of advanced
technologies to the real problems of man and society. – Dr. Vikram Sarabhai

India's National Space Systems

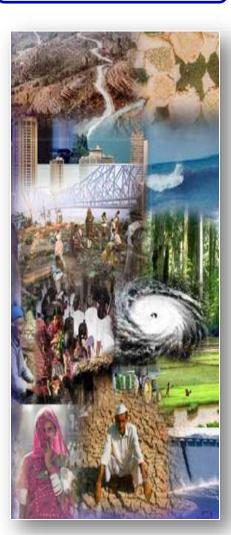
Launch vehicles (PSLV, GSLV)

Satellites
(GSAT, IRS,IRNSS & SPACE
SCIENCE)

Societal Applications


Indian Remote Sensing (IRS) Satellites

Indian
Communication &
Meteorological
Satellites



Indian Navigation Satellites

Space Science & Planetary Exploration Satellites

Space Science & Planetary Exploration

Space Science - The Quest For Knowledge

Much before applied science and technological applications enriched human lives astronomy (Space science of yesteryear) and its applications held sway over humans.

Chandrayaan-1 India's First Mission to Moon

चन्द्रयान-1 भारत का पहला चन्द्र मिशन

CHANDRAYAAN-1

PAYLOADS

Sub-KeV Atomic Reflecting Analyser (SARA)

Compact Imaging X-ray Stereoscope (CIXS)

Mini-SAR

High Energy X-ray Spectrometer

HEX

Volatile Transport on Moon Th and U map of Polar and U-Th-rich regions

Moon Impact Probe (MIP)

Radiation Dose Monitor (RADOM)

Shortwave Infrared Radiometer (SIR-2)

Lunar Laser Ranging Instrument (LLRI)

Terrain Mapping Camera (TMC)

Moon mineralogy Mapper (M3)

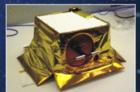
Hyper Spectral Imager (HySI)

M3

To image the Moon surface using low energy neutral atoms

To prepare a 3-dimensional Atlas - Swath 20 km and Resolution 5m, Spectral Range 0.5 to 0.6 μm SWIM

To image Solar Wind - Lunar surface interaction Mini-SAR



To detect Lunar Polar Water Ice

CIXS

SIR-2

Mineral Mapping

CENA

RADOM

To measure Radiation Environment in Lunar Orbit and enroute to the moon

Mineral mapping 256 bands of 10 nm resolution

CHANDRAYAAN-1

- PINNACLE OF ISRO'S INTERNATIONAL COOPERATION

- **High resolution remote** sensing in the visible, near infrared, microwave & X-ray regions
- Preparation of a 3D atlas & chemical mapping of entire lunar surface

Ground Segment

- Indian Deep Space **Network (IDSN)**
- Spacecraft Control Centre (SCC)
- Indian Space **Science Data Centre** (ISSDC)

Hyperspectral Imager (HySI)

Lunar Laser Ranging Instrument (LLRI)

High Energy X-ray Spectrometer (HEX)

Moon Impact Probe (MIP)

Chandrayaan-1 Imaging Xray Spectrometer (C1XS)

Smart Near Infrared Spectrometer (SIR-2)

Sub keV Atom Reflecting Analyser (SARA)

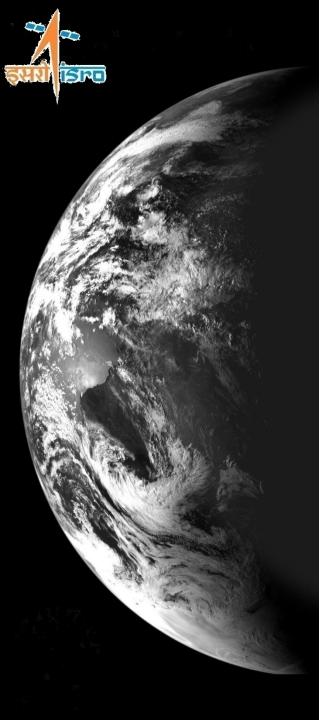
Radiation Dose Monitor (RADOM)

Mini Synthetic Aperture Radar (MiniSAR)

Moon Mineralogy Mapper (M3)

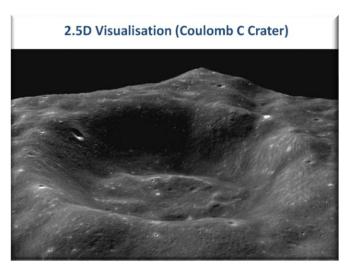
Indian Deep Space Network (IDSN)

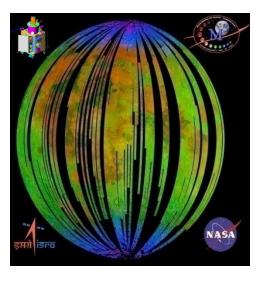
18m Terminal is operational


Adequate for Chandrayaan-1

32m Terminal Cater to future interplanetary Missions beyond Moon

Both are Co-located near Bangalore (BYALALU)



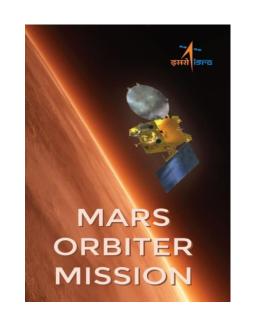


Earth as viewed by Chandrayaan-1 TMC on 29 Oct. 2008 Distance ~ 70000 Km. from Earth

IMAGES FROM MIP

Discovered Hydroxyl and Water molecule on the Lunar surface

Challenges & Success story


Mars Orbiter Mission - Overview

India's Pride -

- First Indian Interplanetary mission to Mars.
- Fourth Space agency to successfully reach Mars.
- First country to reach Martian orbit in its maiden attempt
- Most economical interplanetary mission
- Realized in a record time of 15 Months.
- Successful accomplishment of Mission Objectives
- MoM, was conceived as a logical extension of Chandrayaan-1 with the objective to Study surface features, morphology, topology, mineralogy of Mars and constituents of Martian atmosphere
- Develop & Demonstrate technologies required for design, planning, management and operations of an interplanetary mission.
- Constraint on Launch opportunity: Once in 26 months. If September 2013 target is missed, next launch window is January 2016.

MOM team won the US based National Space Society's "Space Pioneer Award" for science and engineering category for the year 2015.

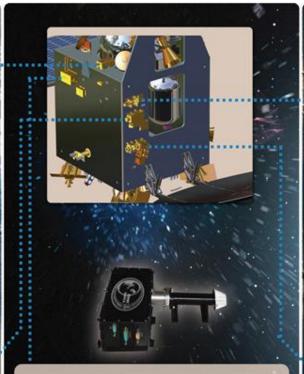
Indira Gandhi Prize for Peace, Disarmament & Development in recognition of path breaking achievement ,culminating in MOM & Strengthening International Cooperation in Peaceful use of Outer Space

Mars Orbiter Mission - Overview

Contd...

SCIENTIFIC PAYLOADS

Lyman Alpha Photometer (LAP)


Measures the relative abundance of deuterium and hydrogen from Lymanalpha emission in the Martian upper atmosphere. allows us to understand especially the loss process of water from the planet.

Methane Sensor for Mars (MSM)

Designed to measure Methane (CH4) in the Martian atmosphere with PPB accuracy and map its sources. Global data is collected during every orbit.

Atmospheric studies

Mars Exospheric Neutral Composition Analyser (MENCA)

quadruple mass spectrometer capable of analysing the neutral composition in the range of 1 to 300 amu with unit mass resolution.

Plasma and particle environment studies

Mars Color Camera (MCC)

This tri-color camera gives images & information about the surface features and composition of Martian surface. Useful to monitor the dynamic events and weather.

Thermal Infrared Imaging Spectrometer (TIS)

measures thermal emission. Many minerals and soil types have characteristic spectra in TIR region. TIS can map surface composition and mineralogy of Mars.

Surface Imaging Studies

Mars Orbiter Mission - Challenges

Contd...

SPACECRAFT CONFIGURATION

Launch vehicle Limitation
Short realization time

RISK MANAGEMENT

Technical judgment

Qualification of Systems

MOM REALISATION CHALLENGES

SPACECRAFT REALISATION

New technology developments

Mission Planning & Management

Long lead items procurement

Tweaking of existing systems

PROJECT MANAGEMENT

Schedule & Budget Constraint
Optimum Launch Opportunities
JPL /NASA Navigation Support
Ground Segment & Ship-borne
Transportable Terminal readiness

Mars Orbiter Mission - Challenges

PROPULSION SYSTEM

Challenges:

To **restart the Liquid Engine** after 10 months for Martian Orbit Insertion (MOI) manoeuvre.

Solutions:

Two Liquid Engine hardware were ground tested in ISRO facility, IPRC at Mahendragiri after subjecting them for near flight conditions.

POWER SYSTEM

Challenges:

No power generation during MOI due to eclipse.

Very low temperature of solar panels during eclipse periods (-185 Deg C).

Solutions:

The ground battery identical to the one used in MOM was characterized.

Prior to launch, the low temperature qualification test was conducted at coupon level to qualify it for -210 deg C.

COMMUNICATION SYSTEM

Challenges:

Communication management in Earth bound phase, cruise phase, MOI and Martian orbit phase.

Solutions:

Analysis for MOI using Thermal Mathematical Model carried out

SPACECRAFT AUTONOMY

Challenges:

- Limited visibility of the spacecraft
- Limited uplink and downlink volume

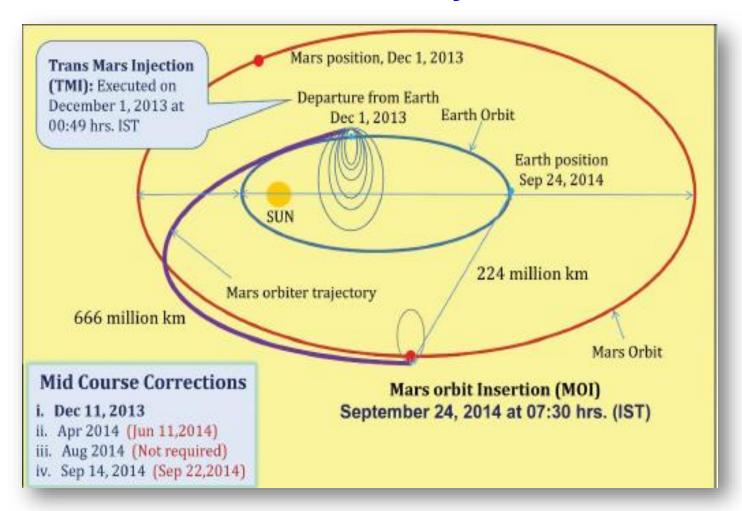
Solutions:

On-board autonomy is achieved through

- Autonomous Fault Detection, Isolation and Reconfiguration (FDIR) logics
- Master Recovery Sequencer(MRS)
- Putting it in Safeguard Mode
- The command modules meant for execution of MOI autonomously were tested extensively for its correctness in an exclusive ground hardware simulation set up.

THERMAL SYSTEM

Challenges:


The spacecraft needs to cope with a wide range of thermal environment.

Solutions:

Analysis for MOI using Thermal Mathematical Model carried out.

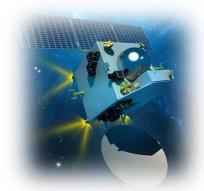
- Trajectory generation for all phases of Mission
- Maneuver strategy design and analysis package
- Attitude steering profile generation for all phases & Attitude analysis
- Orbital events generation
- Orbit determination system considering range, doppler & DDOR measurements for various phases of the Mission
- Onboard orbit models for Heliocentric and Martian Phases
- Onboard attitude steering for Heliocentric and Martian Phases
 - Model based as well as coefficients based
 - Verification of OIL's results completed
- Proximity analysis with asteroids in Cruise phase and Phobos & Deimos in Martian Orbit phase & with Comet A13

Mars Orbiter Mission - Journey to Mars

GEO CENTRIC PHASE

21.10.13 to 3.12.13 44 Days

HELIO CENTRIC PHASE

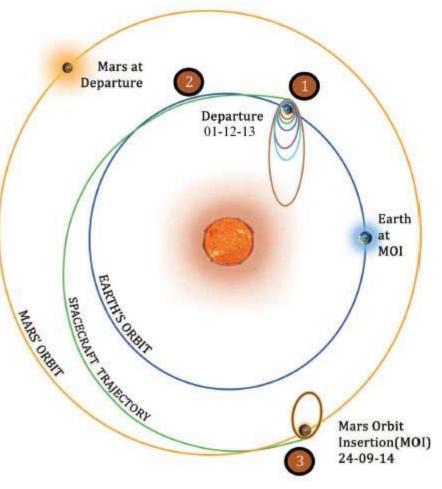

3.12.13 to 22.9.14 298 Days

MARTIAN PHASE

22.09.14 Onwards Till EOL 298 Days

Mars Orbiter Insertion was carried out successfully on Sept, 24, 2014

September 24, 2014 – A Historic Day for India India's first Inter-Planetary Probe reached Mars Orbit



Technological Achievements

- Realized a spacecraft to reach Mars and orbit around Mars
- Radiation shielding for prolonged exposure
- Built high level of onboard autonomy within the Orbiter
- Robustness and reliability of propulsion system
- Precisely inserted into Martian orbit after 300 days voyage
- Currently undertaking a few scientific studies using 5 instruments

HOW WE REACHED MARS

Phases of MOM's Journey

- 1. Earth-centric phase
- 2. Sun-centric phase
- 3. Martian phase

Mars Orbiter Mission - Realization Strategy

- Top priority for Technology challenges
- Micro level planning and scheduling
- Robust review mechanism at various levels
- Concurrent and collaborative engineering efforts
- Thoroughly analysis of lesson learnt from other Mars Missions
- Use of proven heritage systems
- Dedicated team effort
- Extensive quality and reliability checks at all levels

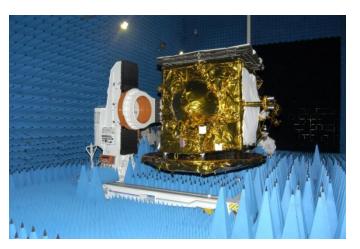
Structure Delivery & Start of Integration activity Clean Room

Subsystem Integration activities in Clean Room

Spacecraft Integration activities in Clean Room

Loading into Thermovac Chamber

Mars Orbiter Mission – Making of Mars

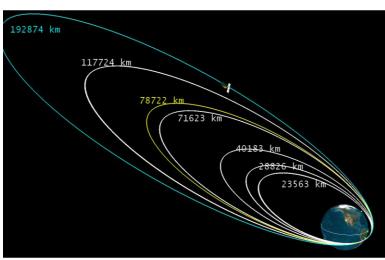


Solar Panel Testing

HGA-Antenna Deployment Test

EMI/EMC Test

Vibration Test


Mars Orbiter Mission – Sequence of events

Commencement of Satellite Integration, 25th June 2012

PSLV-C25 on November 5, 2013

Six orbit raising manoeuvers to raise the apogee

Trans Mars Injection on December 01, 2013

Main Liquid Engine Successfully restarted on September 22, 2014

Inserted into Mars Orbit Honourable Prime Minister of India, Mr Narendra Modi September 24, 2014

Mars Orbiter Mission – Data Products


Full disc image of Mars, taken by the Mars Color Camera, from an altitude of 66,543 km.

Image of Phobos, the larger of the two Martian moons taken by the MOM

Spectacular 3D View of Arsia Mons a huge Volcano on Mars

View of a Portion of the gigantic Valles Marineris Canyon of Mars

Space Science Missions - On the Anvil

Space Science & Planetary Exploratory Missions

FUTURE MISSIONS...

ASTROSAT

Multi-wavelength Astronomy Satellite for observation of galactic objects

CHANDRAYAAN-2

Landing in a high latitude region First Rover-based insitu studies of lunar chemistry & volatiles

ADITYA

A Space based Advanced Solar Coronagraph to Study solar corona

ASTROSAT

India's first satellite dedicated for multiwavelength astronomy for observation of galactic objects in outer space.

SPACECRAFT SPECIFICATIONS		
ALTITUDE 650 KM		
INCLINATION	8 DEG	
MASS	~ 1500 KG	
POWER	940 WATTS	
MISSION LIFE	5 YEARS	
LAUNCHER	PSLV	

Optical Gamma-ray X-ray		
		PAYLOADS
	UVIT	ULTRA VIOLET IMAGING TELESCOPE (IIA/IUCAA)
	LAXPC	LARGE AREA XENON PROPORTIONAL COUNTER (TIFR)

(TIFR)

SOFT X-RAY TELESCOPE (TIFR)

CADMIUM ZINC TELLURIDE DETECTOR

SKY SCANNING MONITOR (ISAC-ISRO)

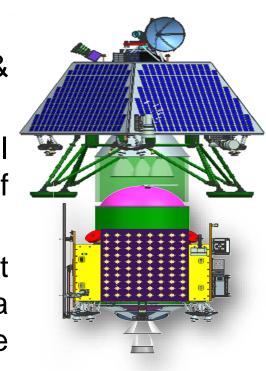
SCIENCE OBJECTIVES

- Determination of black hole masses
- Details on nature of transient behaviour, QPO and its evolution, period evolution
- Improved UV morphology, star formation & its evolution, galaxy luminosity function

SXT

CZT

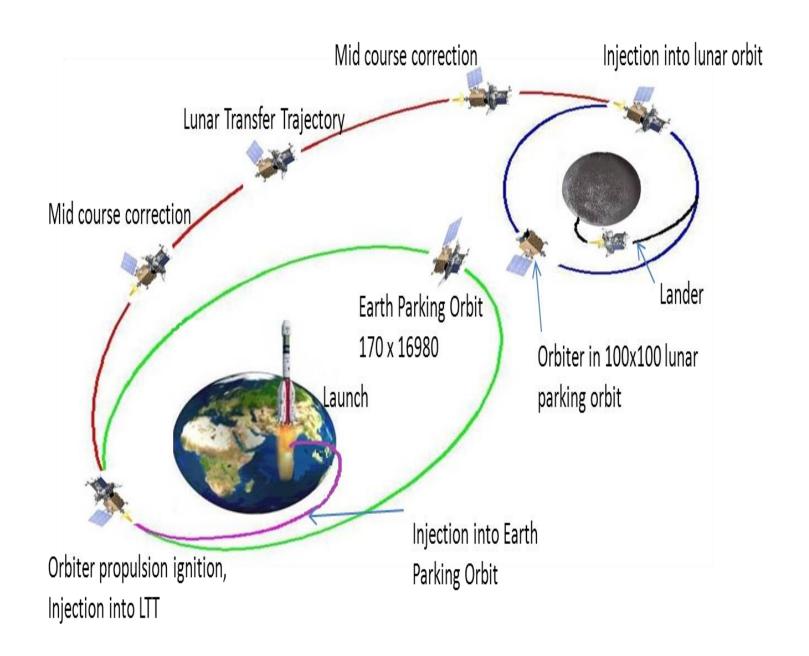
SSM


- Study of Galactic binary systems
- X-ray monitoring of Sky & Deep UV survey of selected regions of sky.

CHANDRAYAAN-2: Overview

A follow on mission to the first Indian lunar mission with a capability to soft land at a specified lunar site and to carry out in-situ chemical analysis of the lunar surface and will have Orbiter Craft and Lander craft equipped with rover.

Mission Objective


- Expanding the technologies and 'Develop & Demonstrate' newer technologies
- To carry payloads in the Orbiter craft that will enhance the scientific objectives of Chandrayaan-1
- To realize a Lunar Lander Rover capable of soft landing on a specified lunar site and deploy a Rover to perform mobility and science experiments.

CHANDRAYAAN-2: Mission Specifications

Launch vehicle	GSLV M-II
Lift of Mass	3250kg
GSLV injection orbit	170 X 18500 km
Orbiter	100 km around moon Mission life of one year Orbiter to communicate with Lander & Rover
Lander	100 km (Initial) Soft Landing on Moon Mission life of one lunar day (~14 Earth Days)

CHANDRAYAAN-2: Mission Profile

Orbiter Craft – Salient Features

Parameters	Orbiter Craft (OC)
Orbit	100 km x 100 km
Mass	2310kg [Propellant :1705 kg]
Envelope	Compatible with GSLV MK II
Power Generation	~ 900 W (Two Deployable Panels with SADA)
Battery	Li Ion (36 Ah)
Communication - Ground - Rover	S -Band & X-Band S -Band
Propulsion Tanks LAM Thrusters	2 x 769 L 440 N 8 x 22 N
Mission life	1Year (Minimum)

Lander Craft – Salient Features

Parameters	Lander Craft (LC)
Orbit	Soft Landing on the Moon
Mass	940 kg [Propellant :500 kg]
Envelope	Compatible with GSLV MK II
Velocity at touchdown	< 2m/ sec
Power Generation	~ 300 W to 150W (Three Body mounted panels)
Battery	Li Ion (26 Ah)
Communication — Ground — Rover	S -Band & X-Band S -Band
Propulsion Tanks LAM Thrusters	2 x 350 L 4 x 800 N (Throttlable) 8 x 50 N

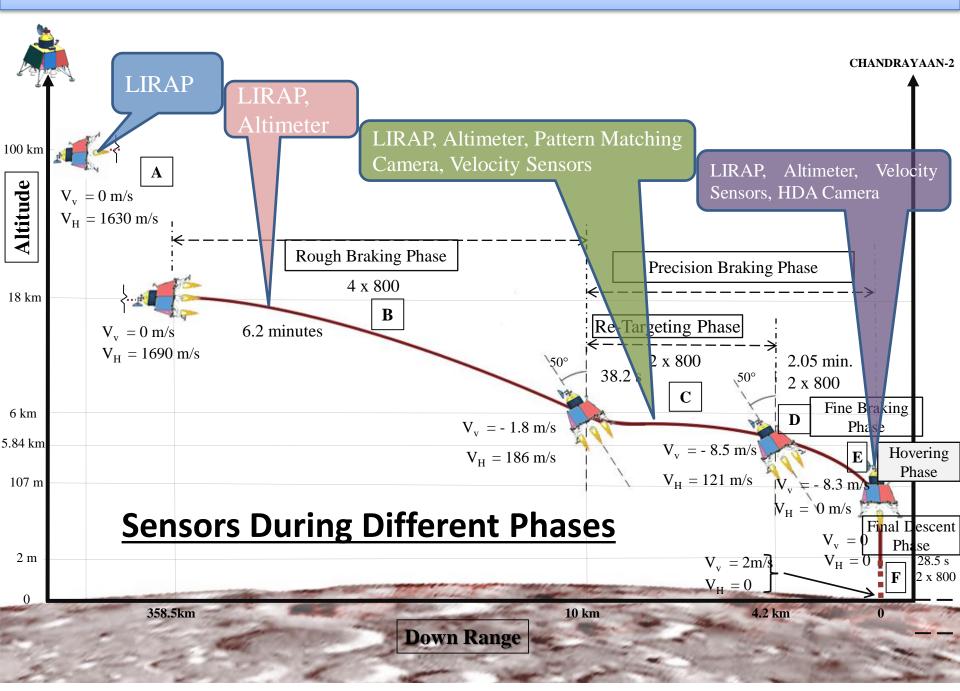
Mission life 1 Lunar Day(~ 14 Earth Days & Related to Landing site)

Rover – Salient Features

Parameters	Rover	
Chassis WEB size	850 x 450 x 100 mm	
Mass	25 kg	
Life of the Mission	1 Lunar Day(~ 14 Earth Days & Related to Landing site)	
Nominal velocity	1 cm / sec	
Obstacle climbing capability	50 mm (max)	
Power	Solar Array - 40 Watts Battery- 3Ah	
Communication	To Receiver: S-Band 2kbps From Transmitter: S-Band64/10kbps	
Sensors	Navigation camera for determining ground topology	
Payloads	LIBS(Laser Induced Breakdown Spectroscope) APXS(Alpha particle Induced X-Ray Spectrometer)	

CHANDRAYAAN 2: Orbiter Payloads

S.No	Payloads	Objectives/Features	Mass	Power
1	Chandrayaan-2 Large Area Soft X-ray Spectrometer (CLASS)	Maps the major rock forming elements Mg,Al,Si,Ca,Ti and Fe on the lunar surface at a spatial resolution on 12.5 km using the technique of X-ray Fluorescence	8.7 kg (Including Mechanism)	28 W
2	X-Ray Solar Monitor (XSM)	Observes the X-rays emitted from the Sun and its corona. XSM also supports the CLASS payload observation.	1.3 kg (Including Mechanism)	10 W
3	Synthetic Aperture Radar L & S Band (SAR)	To understand the scattering chacs. of lunar surface and subsurface features & to map lunar craters and other features especially in the polar regions.	20.1 kg (Including CFRP Structure)	98W (L- Band), 102W (S- Band)
4	Imaging IR Spectrometer (IIRS)	Images the moon surface in 0.8 to 5 micron spectral region to investigate &identify minerals and signatures of hydroxyl (OH) and water (H2O) molecules in polar region	8.85 kg (Including Thermal)	50 W (Cool Down) 36 W (20 Min. opn)
5	Chandra's Altitudinal Composition Explorer-2 (CHACE-2)	Neutral Mass Spectrometer which will carry	4.2 kg	50 W Dega Mode 39 W Nominal
6	Terrain Mapping Camera (TMC-2)	Has three cameras— Fore, Nadir and Aft with a spatial resolution of 5m & swath of 20km. Prepares a detailed three dimensional map of the lunar surface.	3.3 kg	5 W


CHANDRAYAAN 2 : Lander Payloads

SI. No	Payload	Objectives	
1	Instrument for Lunar Seismic Activity (ILSA)	To measure seismicity around the landing site and delineating the structure of the lunar crust and mantle.	
2	Chandra's Surface Thermo physical Experiment (ChaSTE)	To carry out the measurements of thermal properties of lunar surface.	
Radio Anatomy of Moon Bound Hypersensitive ionosphere and Atmosphere (RAMBHA)	Dual Frequency Communication Experiment	To measure total electron content (TEC) of the Lunar ionosphere and its morphological.	
		Langmuir probe(LP)	To measure the near surface plasma (ions and electrons) density and its changes with time

CHANDRAYAAN 2: Rover Payloads

S.No	Payloads	Objectives/Features	Mass	Power
1	Laser Induced Breakdown Spectroscope (LIBS)	To detect and quantitatively analyze major elements (Na, Mg, Al, Si, K, Ca, Fe, Cr, Mn, Ti, H, He, C, N, O, P & S) that are commonly found in lunar-rock forming minerals.	0.8 kg	4W
2	Alpha Particle X-ray Spectrometer (APXS)	Determine the chemical composition of Lunar rock and soil by detecting the Characteristic X-rays emitted from Particle excitation (PIXE) and X-ray Fluorescence processes (XRF).	0.8 kg (Including Mechanism)	7W

TRAJECTORY PROFILE OF CHANDRAYAAN-2 LANDER

ADITYA

ADITYA - The first Indian space based coronagraph intended to study the solar corona in visible and near IR bands. The main scientific objectives of the mission is to study the Coronal Mass Ejections (CME).

Spacecraft Bus	IRS Bus
Mass	~ 1400 Kg
Power	1500 W
Mission Life	> 5 Years
Orbit	Halo Orbit about Sun- Earth L1 Point
Data Volume & Download Read out Rate	110 Gb, 4 MBPS
Payloads Proposed	 Enhanced Visible Emission Line Coronograph High Energy L1 Orbiting X-ray Spectrometer Plasma Analyser Package Solar Wind & Thermal Ion Spectrometer Solar Low Energy X-ray Spectrometer Solar Ultraviolet Imaging Telescope

Thank You