

INDIAN SPACE PROGRAMME

- For National Development

Dr SV Sharma
Dy Director, ISAC

ISRO SATELLITE CENTRE, BENGALURU

CONTENTS

- 1. NATIONAL SPACE SYSTEMS
- 2 SATELLITE APPLICATIONS
 - a. SOCIETAL BENEFITS
 - b. DISASTER MANAGEMENT
 - c. NAVIGATION
 - d. NATURAL RESOURCE MANAGEMENT
 - d. OCEANOGRAPHY
 - e. SPACE SCIENCE EXPLORATION
- 3 CHALLENGING PROJECTS
- 4 CONCLUSIONS

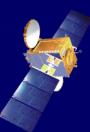
SPACECRAFT NATIONAL SPAC SYSTEMS **LAUNCH VEHICLES**

NATIONAL SPACE SYSTEMS

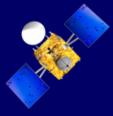
ROCKETS/LAUNCH VEHICLES

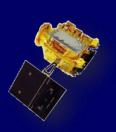
PSLV

GSLV



SPACECRAFT


Remote Sensing (IRS) Satellites


Communication & Meteorological Satellites

Navigation Satellites

Space Science & Planetary Exploration Satellites

DIMENSIONS OF INDIAN SPACE PROGRAMME

Space Infrastructure

- Launch vehicles (PSLV, GSLV)
- Spacecrafts (LEO, GEO, Navigation & beyond) – INSAT,GSAT, IRS
- Sensors and Transponders

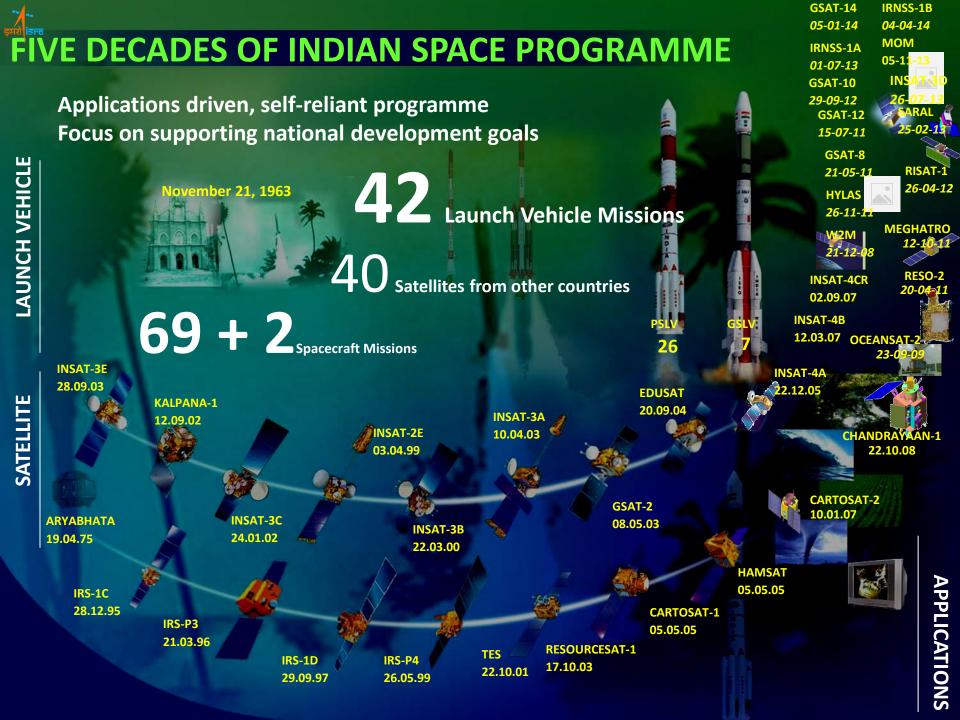
Ground Segment

- Data Acquisition, Processing,
 Calibration -Validation
- Fixed Satellite Services, Broadband Satellite Services, Mobile Satellite Services, Ground stations
- Deep Space Network , TTC Network

Applications

- Natural Resources Management
- Meteorology & Ocean Studies
- Satcom & Navigation
- Synergy: Earth Observation
 /Satcom/Navigation Village Resource
 Centre

Capacity Building


- Formal education through Centre for Space Science & Technology Education in Asia & the Pacific, Indian Institute of Remote Sensing,...
- Indian Institute of Space Science & Technology

Institutionalization

- National Natural Resources
 Management System
- Involvement of stake-holders from the planning level
- Antrix

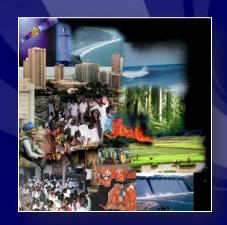
International Cooperation

 Bilateral and multilateral cooperation with various countries and international Organisations

Satellite Applications

REMOTE SENSING

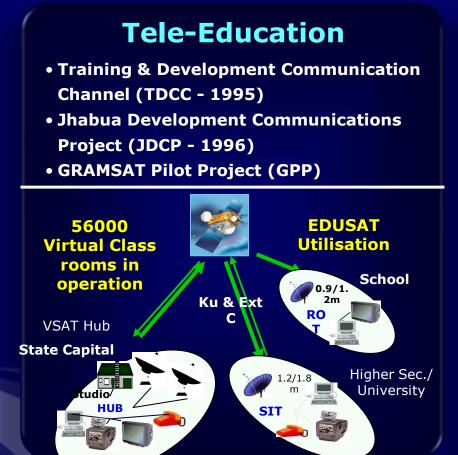
SATELLITE APPLICATIONS



- SPEECH CIRCUITS ON TRUNK ROUTES
- TV BROADCASTING
- BUSINESS COMMUNICATIONS
- MOBILE SATELLITE SERVICES
- RADIO NETWORKING
- SEARCH AND RESCUE SERVICES
- VSAT CONNECTIVITY
- METEOROLOGY IMAGING
- DISASTER WARNING SYSTEM

NAVIGATION

- IMPROVED POSITION ACCURACY
- NAVIGATION
 APPLICATIONS FOR:
 AIRCRAFT, SHIPS, VEHICLE,
 FLEET MOVEMENT,
 ROUTING / ALIGNMENT
- SCIENTIFIC RESEARCH APPLICATIONS FOR ATMOSPHERIC STUDIES
- IONOSPHERIC SCINTILLATIONS

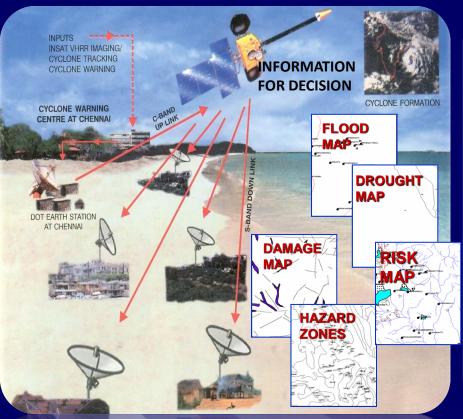


REMOTE SENSING

INFORMATION TO SOLUTIONS:

- AGRICULTURE & CROPS
- FOREST & BIO-RESOURCES
- WATER RESOURCES
- GEOLOGY
- OCEAN/COASTAL
- ENVIRONMENT
- RURAL DEVELOPMENT
- URBAN MANAGEMENT
- CARTOGRAPHY/MAPPING
- CLIMATE MODELLING
- GLOBAL CHANGE

SATELLITE APPLICATIONS - SOCIETAL BENEFITS



DEDICATED SATELLITE BASED SERVICES IN THE AREAS OF EDUCATION & HEALTH SECTORS

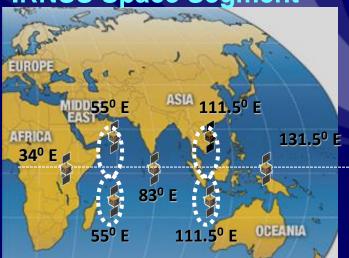
SATELLITE APPLICATIONS - DISASTER MANAGEMENT

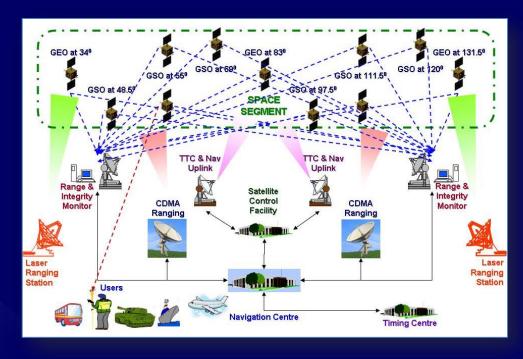
Disaster Management Systems

Hazard Zonation, Risk Assessment

Satellite Aided Search & Rescue

Networking, Early Warning


COMMUNICATION & REMOTE SENSING SATELLITES SERVICES FOR DISASTER MANAGEMENT & MITIGATION


SATELLITE APPLICATIONS - NAVIGATION

IRNSS CHARACTERISTICS

- A Regional Navigation satellite system for Indian Region
- An independent, self-reliant and civilian system
- 7 Spacecraft (3 GEO + 4 GSO) Constellation
- Satellite Mass 1304 Kg at Liftoff
- Dual Frequency downlinks for User
- Position Accuracy : 18.3m
- Navigation Applications:
 Aircraft, Ships, Vehicle, Fleet
 Movement, Routing/alignment
- Scientific research
 Applications: Atmospheric studies & Ionospheric scintillations

IRNSS Space Segment

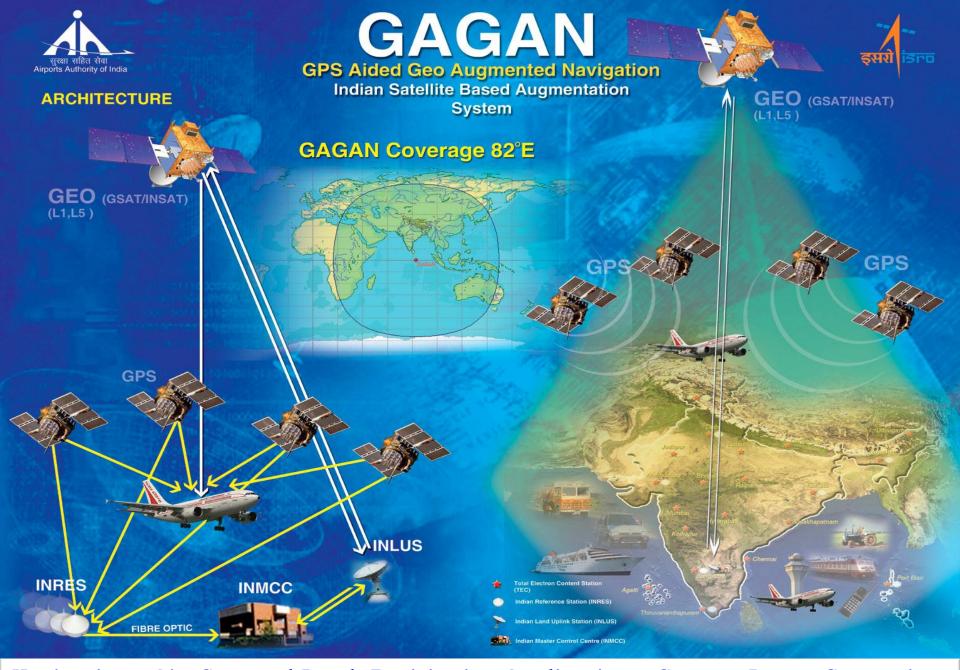
SATELLITE APPLICATIONS - NAVIGATION

- Civil Aviation
- Land transportation/Fleet Management
- Railways
- Surveying and Geodesy
- Mobile Phones
- Car navigation
- Atmospheric studies
- GIS & related data products
- Precision farming

Control

Intelligent Vehicle Systems

Maritime



Space Transportation

Fleet Management

Navigation - Air, Sea and Land, Positioning Applications, Survey, Image Correction, GIS, Timing, Surveillance/fleet monitoring

SATELLITE APPLICATIONS - NATURAL RESOURCES MANAGEMENT

Space-based Services for Community Outreach- Village Resource Kiosks

Water Resources

- Potential Drinking Water Zones
- Command Area Management
- Reservoir Sedimentation
- Canal Alignment

Forest, Environment, Bio resources

- Forest Cover & Type Mapping
- Forest Fire and Risk Mapping
- Biodiversity Characterization
- Environmental Impact Studies

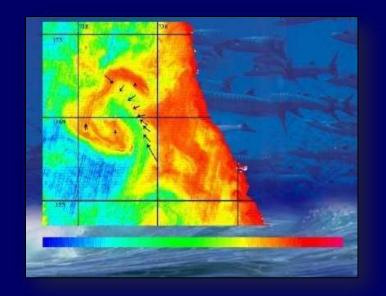
Rural & Urban

- Landuse/Land Cover Mapping
- Wasteland Mapping
- Rural Roads Inventory
- Urban Sprawl Studies
- Large Scale Mapping

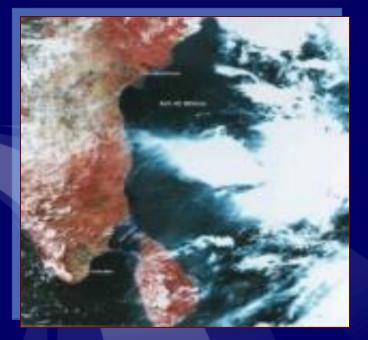
Weather & Climate

- Extended RangeMonsoon Forecasting
- Ocean State Forecasting
- Regional Climate Model

WATERSHED DEVELOPMENT


Agriculture & Soil Resources

- Crop Acreage & Production
 Estimation
- Soil & Land Degradation Mapping
- Watershed Development
- Horticulture Mission for North-East


AGRICULTURE

SATELLITE APPLICATIONS - OCEANOGRAPHY

Coastal & Ocean Resources

- Potential Fishing Zone (PFZ) Identification
- Coastal Zone Mapping

IRS IMAGING CAPABILITIES

KALPANA

Global Coverage: Application Specific 1 KM - < 1M Resolution RISAT-1

IRS-P4

IRS-P6

1 KIVI VHRR

360 M **CLIMATE/** OCIVI

IRS-P6

MICROWAVE IMAGING

WEATHER

188 M AWIFS

NATIONAL

SURVEYS

AWIFS

DETAILED PLANNING

23 M LISS III

TES

3M TO 50 M Resolution

5.8 M

CARTOSAT-1 2.5 M

OCEAN

APPLICATION

NATURAL RESOURCE MAPPING

CARTO-2 1 M Resolution LISS IV PAN

1 M

CARTOSAT DATA PRODUCTS

CARTOSAT-1 IMAGE

TES IMAGE (1M) – BANGALORE VIDHANA SOUDHA

CARTO-2A PAN (2.5M) + IRS-P6 LIV MX(5.8M)

SPACE SCIENCE EXPLORATION

Much before applied science and technological applications enriched human lives astronomy (Space science of yesteryear) and its applications held sway over humans. These interests later led into number of other disciplines like Astrophysics, stellar physics, Astronomy, aeronomy & planetary atmospheres, earth sciences, life sciences & solar system studies and Theoretical physics.

- 1. X-RAY ASTRONOMY
- 2. GAMMA RAY BURSTS
- 3. IONOSPHERIC PLASMA
- 4. MIDDLE ATMOSPHERIC DYNAMICS
- 5. EQUATORIAL ELECTROJET
- 6. SOLAR FLARES AND STORMS
- 7. IONOSPHERIC TOPOGRAPHY
- 8. PLANETARY EXPLORATION

SPACECRAFT CHALLENGING MISSIONS **LAUNCH VEHICLES**

MARS ORBITER MISSION

ISRO's first interplanetary mission to Mars planet with an orbiter craft designed to orbit. Mars in an elliptical orbit. The scientific payload instruments are intended to study surface features morphology, topology and mineralogy of Mars, Constituents of Martian atmosphere. The Earth-Mars trajectory comprises of three phases namely, Earth-centered phase, Heliocentric phase and Martian phase.

SALIENT FEATURES

Orbital Location: 370 X 80,000 Kms elliptical orbit

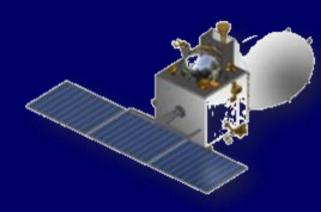
Voyage from : 300 Days

Earth's orbit

Mass : 1350 Kg

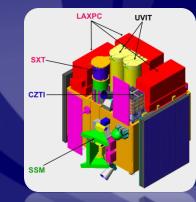
Power : 750 W

Mission Life : ~ 6 Months


Launcher : PSLV C 25

Payload : Lyman Alpha Photometer, Methane Sensor for MARS, Martian

Exospheric Composition Explorer, MARS Color Camera and


TIR Imaging Spectrometer

Launch Date : 5th November, 2013

ASTROSAT

India's first satellite dedicated for multiwavelength astronomy for observation of galactic objects. The satellite will have simultaneous wide spectral coverage extending over visible, ultraviolet, soft X-ray, hard X-ray and low energy Gamma ray

ľ	e •	gı	Ю	n	S

SPACECRAFT SPECIFICATIONS			
ALTITUDE	650 KM		
INCLINATION	8 DEG		
MASS	~ 1500 KG		
POWER	940 WATTS		
MISSION LIFE	5 YEARS		
LAUNCHER	PSLV		

·	
	PAYLOADS
UVIT	ULTRA VIOLET IMAGING TELESCOPE (IIA/IUCAA)
LAXPC	LARGE AREA XENON PROPORTIONAL COUNTER (TIFR)
SXT	SOFT X-RAY TELESCOPE (TIFR)
CZT	CADMIUM ZINC TELLURIDE DETECTOR (TIFR)
SSM	SKY SCANNING MONITOR (ISAC-ISRO)

SCIENCE OBJECTIVES

- Determination of black hole masses
- Details on nature of transient behaviour, QPO and its evolution, period evolution
- Improved UV morphology, star formation & its evolution, galaxy luminosity function
- Study of Galactic binary systems
- X-ray monitoring of Sky & Deep UV survey of selected regions of sky.

ADITYA

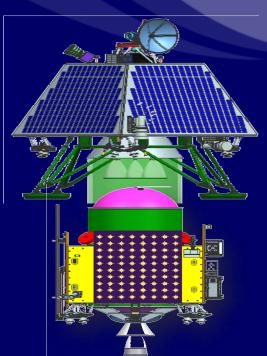
The first Indian space based coronagraph intended to study the solar corona in visible and near IR bands. The main scientific objectives of the mission is to study the Coronal Mass Ejections (CME). The mission is also intended to obtain completely new information on the velocity fields and their variability in the inner corona which has an important bearing on the unsolved problem of 'heating of the corona'.

Spacecraft Bus	IRS Bus
Mass	~ 1400 Kg
Power	1500 W
Mission Life	> 5 Years
Orbit	Halo Orbit about Sun- Earth L1 Point
Data Volume & Download Read out Rate	110 Gb, 4 MBPS
Payloads Proposed	 Enhanced Visible Emission Line Coronograph High Energy L1 Orbiting X-ray Spectrometer Plasma Analyser Package Solar Wind & Thermal Ion Spectrometer Solar Low Energy X-ray Spectrometer Solar Ultraviolet Imaging Telescope

CHANDRAYAAN-2

A follow on mission to the first Indian lunar mission with a capability to soft land at a specified lunar site and to carry out in-situ chemical analysis of the lunar surface and will have Orbiter Craft and Lander craft equipped with rover.

Orbit : 170 x 17000km

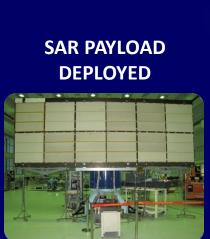

Lift off mass : 3200 Kg Orbiter : 2260 Kg Lander : 940 Kg


Lander payloads:

- 1. Rover 25 kg (With LIBS and APIXS)
- 2. Radio Anatomy of Moon bound Hypersensitive Ionosphere & atmosphere
- 3. Lunar Electrostatic & Dust Levitation Experiment
- 4. Chandra's surface thermal experiment
- 5. MEMS based Seismometer

Orbiter Payloads:

- 1. CLASS- Chandrayaan-2 Large area soft X ray Spectrometer
- 2. SAR- Synthetic Aperture Antenna
- 3. IIRS Imaging IR Spectrometer
- 4. ChACE 2- Chandra's Altitudinal Composition Explorer
- 5. TMC-Terrain Mapping Camera



RADAR IMAGING SATELLITE (RISAT)

RISAT is the first microwave remote sensing satellite and it carries a multimode C-band synthetic aperture radar payload based on active phased array antenna technology. The mission is envisaged to augment mainly Agriculture & Disaster support applications in the country.

SPACECRAFT SPECIIFICATIONS		
536.38 KM		
97.554 DEG		
6AM/6PM		
1850 KGS (P/L :950 KGS)		
4.5 KW		
5 YEARS		
PSLV		

MODES OF PAYLOAD OPERATIONS

Fine Resolution Stripmap (FRS-1)		Medium Resolution ScanSAR (MRS)		High Resolution Spotlight (HRS)
Resol: 3 m	Resol: 9-12 m	Resol: 25m	Resol: 50 m	Spot size :
Swath: 25 Km	Swath: 30 Km	Swath: 115 Km	Swath: 223 Km	10 km X 10 km

MEGHA-TROPIQUES

MEGHATROPIQUES is ISRO-CNES (Indo-French) collaborative satellite to study water cycle and energy exchanges in the tropics.

SPACECRAFT SALIENT FEATURES			PAYLOAD SALIENT FEATURES
		MADRAS	a multi-frequency scanning microwave
Altitude	867 Km		imager at 18, 23, 37, 85 and 157 GHz
Inclination	20 deg	SAPHIR	a 6-channel millimetre wave humidity sounder retrieving information in six
Period	102.16 min		atmospheric layers
Repetitivity	6 times a day	SCARAB	a 4-channel Earth radiation budget instrument, at 0.5-0.7mm, 0.2-4mm
Mass	1000 Kg		and 10.5-12.5mm, 0.2-200mm, spatial
Launch	PSLV - C18		resolution of 40 km.
Misssion Life	5 Years	ROSA	To obtain vertical profiles of Humidity, Temperature Aerosol contents etc

CARTOSAT-3

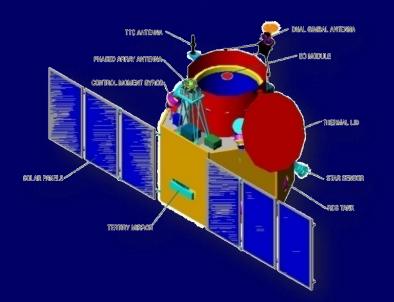
MISSION OBJECTIVES:

Agile advanced satellite to obtain imagery with a very high spatial resolution of 0.25m in panchromatic & 1m in 4 band multi spectral and 12m in HySI.

PAYLOADS PROPOSED: Advanced High resolution Panchromatic Camera,

Multispectral Camera, Hyperspectral Imager

■ Mass : 1500 Kg


Power: 2000 W

Orbit : 450 Km (SSPO)

Mission life: 5 Years

NEW TECHNOLOGIES

- New spacecraft structure
- Advanced OBC
- High accuracy star sensors & gyros
- Advanced Data handling and transmission system
- 12-channel dual frequency SPS system
- New Dual Gimbaled Antenna

INSAT-3D — Satellite for Meteorology

The Spacecraft is multipurpose with high resolution imager and sounder systems for storm warning and improved atmospheric observations and data dissemination capabilities. It also provides communication services. DRT SAS & R transponders will be providing continuity to some of the INSAT services.

SPACECRAFT SALIENT FEATURES

Orbital : 82 Deg East

Location

Bus : I-2K Derived Bus

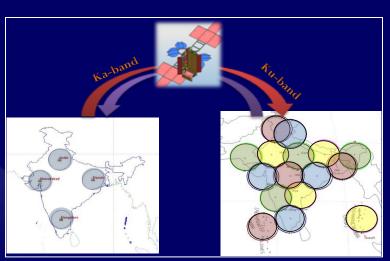
Payload : 6 channel Imager, 19 channel Sounder

and DRT, SAS&R payloads

Power : 1100 Watts

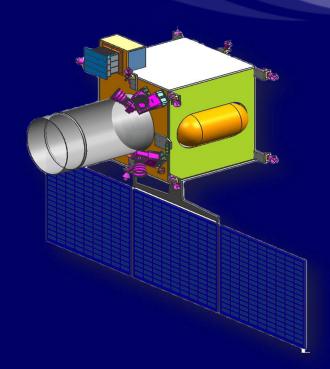
Mass : 2100 Kgs

Mission Life : 7 Years



GSAT-11, Advanced Communication Satellite

- Multi Beam Communication spacecraft
- Orbital location: 74⁰E
- New Modular, high power, high capacity bus
- Advanced concepts and new technological elements
- 32 user beams in Ku band and 8 hub beams in Ka band to provide a through put of 10 GBPS
- New communication architecture to support various telecom services and VSAT networks.
- Compatible ground support system to provide seamless connectivity.
- Bus Compatible with GSLV mark III & all commercial launchers.
- Workhorse for our future communication satellite programme.



GISAT

GISAT is a geo imaging satellite at geostationary orbit with high temporal resolution. It has a multispectral imager operating in visible, near infra-red and thermal infrared bands and hyper-spectral imager operating in visible, near infra-red and short wave infra-red bands

SALIENT FEATURES

- Standard I-1KPlus bus
- Power: 920 W Heat
- LOM:977kg
- Zero momentum biased 3-axis body stabilised [5xRWs]
- OBC with LEON-3 processor
- Star Sensors : Mark-3 type
- LIRU / FOG
- Single sided solar array with 3 panels, 2.15x1.6 m²
- Single 90Ah Li-ion battery

OPTICAL PAYLOADS: 700mm CARTO-2A type telescope Scanning through agile platform using Electronically steerable Antenna (PAA) with High Data rate transmission in Ku-band (200Mbps)

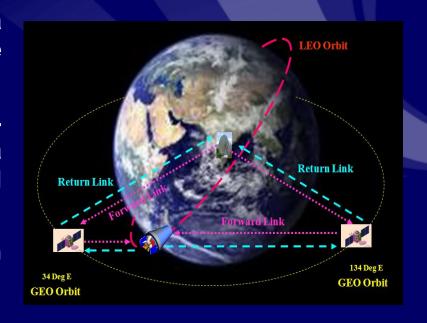
DOCKING EXPERIMENT

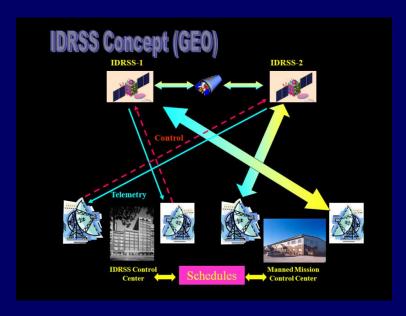
Objectives:

- Technology demonstration for rendezvous and docking, using two IMS (Youthsat) spacecraft - piggy-back on a single PSLV flight
- Demonstrate controllability of target spacecraft from AOCE of chaser spacecraft in docked condition, showing the possibility of extending target spacecraft life chaser

Main

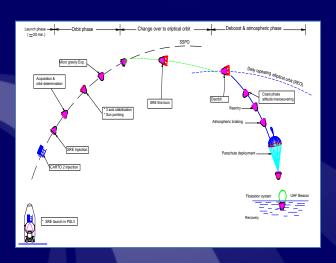
S/C

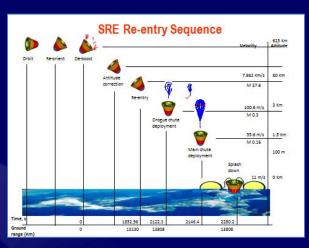

Target



INDIAN DATA RELAY SATELLITE SERVICES (IDRSS)

- IDRSS Provides Tracking and Data Acquisition support for low altitude spacecraft, both manned and unmanned.
- IDRSS orbit: Geo-Synchronous orbit (34 deg E and 134 deg E) would serve as a communication/data link to LEO/Manned missions with nearly continuous visibility
- Remote sensing missions can benefit from IDRSS by way increasing the payload utility, better coverage for TTC purposes
- The data from ground from Mission control center will be transmitted to one of the IDRSS through which it reaches the Crew Module and vice versa.
- IDRSS shall cater
 - Low data rate from IRS for TTC
 - Medium Data rate from Manned mission TM/TC/Voice/Video
 - High Data rate from IRS payload


SPACE CAPSULE RECOVERY EXPERIMENT


SRE laid the foundation for

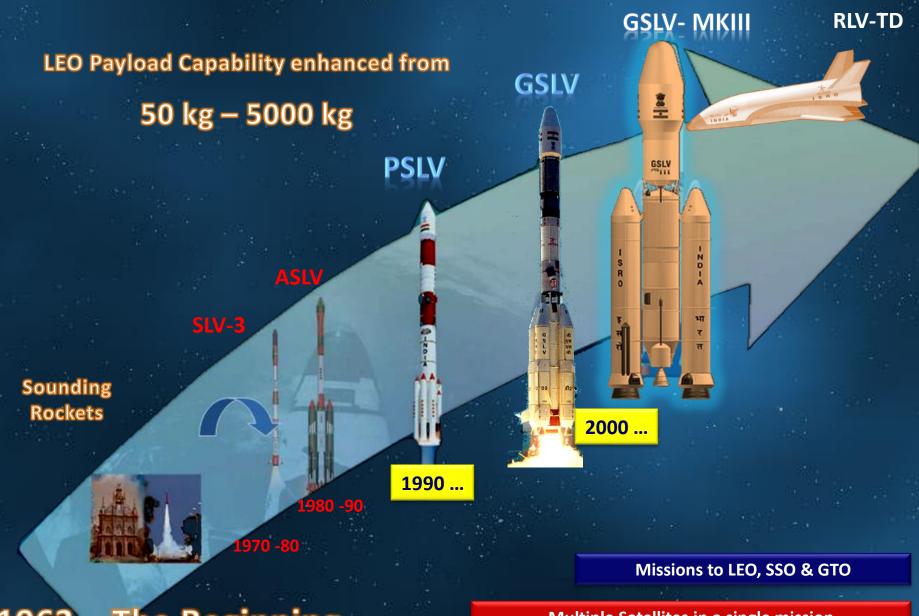
- Reusable launch vehicles
- Reentry Technology
- Manned missions
- Microgravity processing
- Sample return missions.

Aerothermostructure

Rentry

GSAT-14

The Spacecraft will enhance the communication transponder capacity of the GEOSAT Constellation inorbit. It is built around ISRO's I-2K Bus carrying 6 Ext C band, 6 Ku band transponders & 2 Ka Band Beacons. The Spacecraft was launched onboard GSLV-D6 with indigenous Cryogenic stage on 05th January 2014.

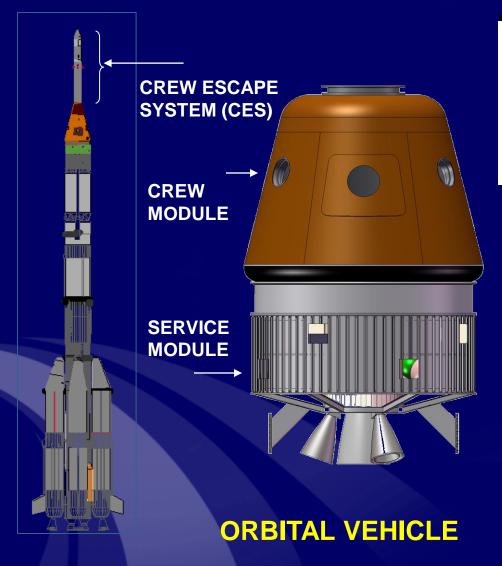

SPACECRAFT SALIENT FEATURES				
Orbital Location	74 Deg longitude			
Communication Payload	6 Ext C band, 6 Ku band & 2 Ka band Beacons	d Transponder		
Mass	2018 Kg			
Power	2.6 KW			
Mission Life	> 11 Years			
Launcher	GSLV-D5			

GSAT-16

GSAT-16 is the most versatile communication satellite that will carry 48 onboard Transponders. This is one of the highest number of transponders flown so far on an Indian Communication Satellite. This will enhance in-orbit communication transponder capacity. The Spacecraft will be launched using a Procured Launch vehicle by end 2014.

SPACECRAFT SALIENT FEATURES			
Orbital Location	55 deg E		
Communication Payload	24 Nor. C Transponders using 15 W S 12 Upper Ext. C Transponders using 12 Ku-Band Transponders using 140	15 W SSPAs	
Mass	3500 Kg		
Power	6.5 KW		
Mission Life	> 12 Years		
Launcher	Procured		

SPACE TRANSPORTATION SYSTEM


1963 - The Beginning

Multiple Satellites in a single mission



INDIAN HUMAN SPACE FLIGHT PROGRAMME

To develop a space vehicle to carry crew of two to LEO and return safely to a predetermined destination on Earth

- Mission duration up to 7 days
- Emergency mission abort and crew rescue provision
- Crew module designed for re-entry and service module for mission management.

CONCLUSIONS

- Today, SPACE TECHNOLOGY is vital and indispensable in all walks of human life.
- Space is going to be a continued frontier for the growth human generation and is going transform the world from 'Nothing to Everything'.
- There are tremendous opportunities in Space Technology based Innovations

THANK YOU